Refine Your Search

Topic

Author

Search Results

Technical Paper

The Application of Coconut-oil Methyl Ester for Diesel Engine

2007-10-30
2007-32-0065
The coconut-oil methyl ester is made from coconut oil and methanol, and both cold start performance and ignition characteristics of coconut-oil methyl ester are experimentally investigated by using a diesel engine. In experiments, diesel fuel and coconut-oil methyl ester are used and the blended ratio of coconut-oil methyl ester to diesel fuel is changed. The test is conducted at full load and 3000 rpm. The diesel engine can be run stably with any mixing ratio of coconut-oil methyl ester, however the power is slightly reduced with increasing the mixing ratio of coconut-oil methyl ester. In the cold start condition, when the mixing ratio of coconut-oil methyl ester increases, the combustion chamber wall temperature rises early and the ignition timing is improved. Therefore, the coconut-oil methyl ester has superior compression ignition characteristics and reduces exhaust gas emissions, so that the coconut-oil methyl ester is good alternative fuel for diesel engines.
Technical Paper

Combustion Characteristic of Lean Mixture Ignited by Gas-Oil Injection in High Compression Engine

1997-10-27
978496
We have investigated combustion characteristics of lean gasoline-air pre-mixture ignited by gas-oil injection using a high compression D.I. diesel engine. Gasoline was supplied as an uniform lean mixture by using carburetors, and gas-oil was directly injected into the cylinder. Two different types of combustion chamber were attempted. It was confirmed that the lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An engine with the re-entrant type combustion chamber had an advantage for combustion and ignition. The brake mean effective pressure increased when relatively rich mixture was provided with a small amount of the gas-oil injection. As the gas-oil injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum gas-oil injection.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
Technical Paper

Analysis of Intermediate Combustion Products in Preflame Reactions in a Spark-Ignition Engine

1997-10-27
978516
The use of a higher compression ratio is desirable for improving the thermal efficiency and specific power of spark-ignition engines, but it gives rise to a problem of engine knock. In the present research, an investigation was made of the role of the preflame reaction region of a spark-ignition engine in the occurrence of autoignition. Emission spectroscopy was used to measure the behavior of formaldehyde (HCHO) in a cool flame. In addition, measure the behavior of the faint light attributed to the HCO radical in a blue flame with the concurrent measurement of the OH radical. The emission waveforms measurements obtained for HCHO when n-heptane (ORON) was used as the fuel, It is thought that these tendencies correspond to the passage and degeneracy of a cool flame. Further, the emission waveforms measured for the HCO radical when blended fuels (6ORON, 8ORON) were correspond to that of a blue flame.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

The Effects of Electric Fields on Flame Propagation of Homogeneous Hydrogen-Air Mixture

2011-11-08
2011-32-0577
The flame propagation behavior of homogeneous hydrogen-air mixture under application of high-voltage uniform or non-uniform electric field was explored by using combustion vessel. When a uniform electric field was applied, two plate electrodes were attached to ceiling and bottom of combustion chamber and, to apply a non-uniform electric field, an electrode in ceiling was needle-shaped and an electrode in bottom was plate-shaped. The positive or negative polarity DC high voltage was applied for an electrode in ceiling. When a positive polarity non-uniform electric field was applied to the mixture at any equivalence ratios and the input voltage was higher than 12 kV, the flame propagation was enhanced in the downward direction. This is because the corona wind was generated from the tip of needle-shaped electrode to grounded electrode by the brush corona.
Technical Paper

A Study on Influence of Forced Over Cooling on Diesel Engine Performance

2011-11-08
2011-32-0605
The ignitability and engine performance of FAMEs at the cold condition were experimentally investigated by using two FAMEs, i.e. coconut oil methyl ester (CME) and soybean oil methyl ester (SME). The cold start test and forced over cooling test were conducted. In the forced over cooling test, engine was forced cooled by the injecting water mist to engine cooling fin. In the cold start test, the cylinder pressure of CME rose earliest because CME has a superior ignitability. The crank angle at ignitions of diesel fuel and CME were not so affected by the forced over cooling, however ignition timing of SME was remarkably delayed. In cases of forced over cooling, COV of maximum combustion pressure of CME was lower than that of normal air cooling condition. The forced over cooling has a potential to reduce NOx emission, however HC, CO and smoke concentrations were increased in a high load due to incomplete combustion.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Performance of Air Motor with Regenerating System Designed for Propulsion of Bicycle

2011-11-08
2011-32-0615
An air motor with regenerating system for propulsion of a bicycle was newly developed. An air motor was driven by the compressed air and the bicycle was propelled. When the bicycle was decelerating, the air motor was acted as a compressor and the kinetic energy of bicycle was regenerated as compressed air. The purpose of this study is to elucidate the performance of air motor and driving characteristic of bicycle. The air motor in this study was the reciprocating piston type like an internal combustion engine, and cylinder arrangement was in-line two-cylinder. The output power increased with an increase of supply air pressure although the maximum cylinder pressure was less than the supply air pressure. The output power decreased as the revolution increased due to friction loss. The maximum cylinder pressure reduced as the rotational frequency increased because the inlet valve opening duration was decreased.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

A Study of the Effects of Varying the Compression Ratio and Fuel Octane Number on HCCI Engine Combustion using Spectroscopic Measurement

2013-10-15
2013-32-9031
A Homogeneous Charge Compression Ignition (HCCI) engine was operated under a continuous firing condition in this study to visualize combustion in order to obtain fundamental knowledge for suppressing the rapidity of combustion in HCCI engines. Experiments were conducted with a two-stroke engine fitted with a quartz observation window that allowed the entire bore area to be visualized. The effect of varying the compression ratio and fuel octane number on HCCI combustion was investigated. In-cylinder spectroscopic measurements were made at compression ratios of 11:1 and 15:1 using primary reference fuel blends having different octane numbers of 0 RON and 50 RON. The results showed that varying the compression ratio and fuel octane number presumably has little effect on the rapidity of HCCI combustion at the same ignition timing when the quantity of heat produced per cycle by the injected fuel is kept constant.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
Technical Paper

The Possibility for Realization of Dual Combustion Cycle for Spark Ignition Engine

2017-11-05
2017-32-0091
The purpose of this study is to operate the spark ignition engine by the dual combustion cycle. The dual combustion cycle has two combustion processes, these are the constant volume combustion and the constant pressure combustion. The lean combustion and the direct fuel injection were applied to realize the dual combustion cycle for spark ignition engines. The combustion of lean mixture was corresponding to the constant volume combustion. The fuel was directly injected to combustion chamber and was burned with the remained oxygen after the lean combustion, so that this was corresponding to the constant pressure diffusion combustion. The combustion experiments were conducted by using the constant volume vessel. The lean propane-air mixture of which equivalence ratios were 0.6, 0.7, 0.8 and 0.9 were used and liquid n-heptane was injected by using the high-voltage electrical discharge.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

An Effect of Cooled-EGR on Diesel Engine Performance Fueled with Coconut-oil Methyl Ester

2020-01-24
2019-32-0618
The purpose of this study is to explore an effect of cooled-EGR on the diesel engine performance fueled with coconut-oil methyl ester (CME). The exhaust gas was cooled by the water at room temperature and was fed to the intake manifold, and the EGR rate was changed from 0 % to 30 % at every 10 %. The engine performances were measured at several EGR rates, fuel injection pressures and timings. Test fuels were CME and commercial diesel fuel. In the case of high EGR rate at which the compression ignition was deteriorated, the ignition timing of CME was always earlier than that of diesel fuel, therefore CME had good ignitability as compared with diesel fuel under EGR application. When the fuel injection pressure was increased at high EGR rate, the ignition delay was improved by the fuel atomization and air-fuel mixing effect.
X